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Abstract
We present a simple method for compressing very large and regularly sampled scalar fields. Our method is partic-
ularly attractive when the entire data set does not fit in memory and when the sampling rate is high relative to the
feature size of the scalar field in all dimensions. Although we report results for R

3 and R
4 data sets, the proposed

approach may be applied to higher dimensions. The method is based on the new Lorenzo predictor, introduced
here, which estimates the value of the scalar field at each sample from the values at processed neighbors. The pre-
dicted values are exact when the n-dimensional scalar field is an implicit polynomial of degree n−1. Surprisingly,
when the residuals (differences between the actual and predicted values) are encoded using arithmetic coding,
the proposed method often outperforms wavelet compression in an L∞ sense. The proposed approach may be
used both for lossy and lossless compression and is well suited for out-of-core compression and decompression,
because a trivial implementation, which sweeps through the data set reading it once, requires maintaining only a
small buffer in core memory, whose size barely exceeds a single (n−1)-dimensional slice of the data.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Compression, scalar fields,
out-of-core.

1. Introduction

Numerous engineering, biomedical, and other scientific ap-
plications produce extremely large data sets through numeric
simulations or physical data acquisition. In a large propor-
tion of the cases, the data represents one or more scalar
fields sampled over regular grids in dimension three, four, or
higher. For example a typical 3D simulation produces val-
ues on a regular grid of 2,0483 samples 6. In 4D a typical
combustion simulation generated using a High-Performance
Parallel Processing Cluster may include 1,000 time slices,
each representing a regular sampling of a cube at a resolu-
tion of 5123 1. Another example may be fluid dynamics data,
used in our tests (see Fig. 1). At each space-time sample, the
values of several scalar and vector fields are produced. Stor-
ing the results of this simulation and transmitting them to
remote visualization clients is expensive. A variety of data
compression techniques have been proposed to reduce the
storage and transmission cost 4.

We focus here on the loss-less, single resolution (i.e. non

This work was performed under the auspices of the U.S. DOE by LLNL under contract no. W-7405-Eng-48.

progressive) compression. Instead of a hierarchical method,
which transmits a sub-sampled (and possibly smoothened)
model first and then estimates the missing values through in-
terpolation, we transmit the values in order, using a new pre-
dictor to extrapolate the next value from the previous ones.
The residuals (differences between the actual and predicted
values) may be encoded with fewer bits and, if desired, fur-
ther compressed using arithmetic coding.

We have extended a simple two-dimensional parallelo-
gram predictor 5 to higher dimensions and have named it
the Lorenzo predictor. It estimates the scalar value of a sam-
ple on the corner of an n-dimensional cube from the scalar
values of the others 2n − 1 corners. Although the formula
for the predictor is very simple, its predictive power is sig-
nificant for higher-dimensional data. For example, in R

4,
the Lorenzo predictor can recover exactly any scalar field
that corresponds to an implicit cubic polynomial. In some
situations, the proposed method outperforms wavelet com-
pression in an L∞ sense, when the residuals are encoded
using arithmetic compression. Furthermore, because, during
compression and decompression, we only need to access the
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Figure 1: A 4D data set from a simulation of two fluids
interacting.

immediate neighbors, the proposed approach is particularly
well suited for out-of-core compression and decompression
where the total size of the data set significantly exceeds what
can be stored in core memory.

2. Prior Art

Several compression techniques have been proposed for
lower dimensional gridded data. These include image and
video compression techniques, as offered by the MPEG-
4 standard 18 and various volume compression approaches
11, 12.

A variety of methods to compress 4D volumes have been
proposed in recent years. These include wavelets 10, discrete
cosine transform (DCT) 3 and run length encoding (RLE) 2.
The wavelet approach uses an interpolating predictor, which,
according to informal experiments, produces 50% smaller
residuals than an extrapolating predictor. On the other hand,
the wavelet’s hierarchical approach requires more space and
processing power than our extrapolating predictor. When lo-
cal temporary storage is an issue, wavelet approaches may
break the data set in smaller chunks and compress each one
independently. The proposed approach does not require such
splitting.

Fowler and Yagel 12 propose a similar approach to ours.
They also use previously decoded samples to predict a new
value in 3D volumes. They use the three nearest visited
neighbors, and compute optimal coefficients for their pre-
dictor. In contrast, we use seven neighbors. Ma et al 13 com-
pute an octree for each frame, and encode the differences be-
tween octrees. They also compare uniform and non-uniform
(or adaptive) quantization of the data before compression.

Others quantize the corrections or the wavelets coeffi-
cients, e.g. Bajaj et al. 11. On the contrary, we quantize the
data set and then perform lossless encoding. As a result, the
maximum error produced by our approach is given by the
quantization error.

Out-of-core methods for simplifying 14 and compressing
15, 17 3D polygonal meshes have recently been proposed.
Out-of-core methods for compressing 3D volumetric data
sets have also been proposed 16. Chiueh et al’s approach
segments the volume into different chunks, transforms each
chunk separately using a Fourier transform, and encodes the
transformed result.

3. The Predictor

When applied to a sample v, the Lorenzo predictor estimates
the scalar value F(v) at v from its immediate neighbors that
have already been processed. Assume that the data is orga-
nized as a regular grid of samples. Both the compressor and
decompressor visit the data in scanline order. For simplic-
ity of notation, we use the local coordinate system where
sample v has coordinates {1}n = (1,1, . . . ,1) and its previ-
ously visited neighbors are those samples with coordinates
in Z

n
2 = {0,1}n. The value of the scalar field F(v) is esti-

mated from the field values at the other previously recovered
vertices U = Z

n
2 −{v} of the n-dimensional unit cube using

the following formula:

E(v) = ∑
u∈U

(−1)c0(u)+1F(u) (1)

where E(v) is the prediction of F at v and c0(u) denotes the
number of coordinates of u that equal zero. Note that c0(u)
may also be expressed as c0(u) = n−c1(u) = n−u ·v, where
n is the dimension, c1(u) is the number of coordinates in u
that equal one, and u · v is the dot product of u and v.

Note that, as shown in Fig. 2, in this formulation, the im-
mediate neighbors of the predicted vertex v have weight +1.
Second degree neighbors (i.e., those which can be reached
from v by traversing two edges of the cube) have weight −1,
third degree neighbors have weight +1, and so on.

4. Prediction for polynomials

The estimated values computed by the Lorenzo predictor in
n dimensions are exact for all scalar functions that are poly-
nomials of degree n−1. As a proof, assume that P is a poly-
nomial of degree m in n variables, with m < n, and consider
the following theorem and its corollary:

Theorem 1 For a given monomial M in n variables of degree
m < n, the sum of signed values (−1)c1(u)M(u) over all the
vertices u of the unit cube is zero.

More formally, let u = (x1, . . . ,xn). A monomial M(u) has
the form: xp1

1 · · ·xpk−1
k−1 xpk

k xpk+1
k+1 · · ·xpn

n , with ∀i pi ≥ 0 and

∑i pi = m. The theorem states that ∑u∈Z
n
2
(−1)c1(u)M(u) = 0.

Proof There are n variables, but the sum ∑i pi = m of
the powers of the variables listed in M is less than n.
Therefore at least one variable is not listed in M. Assume
without loss of generality that the kth variable is not
listed. Consequently, the value of M is independent of that
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Figure 2: In the 2D case (top left), the new value is pre-
dicted from its neighbors using the parallelogram rule (add
the scalar field values at the two ‘a’ vertices and subtract the
value at the ‘b’ vertex). In the 3D case, we add the values of
the ‘a’ corners, subtract the values of ‘b’ corners, and add
the values of the ‘c’ corner. In the 4D case, we add the val-
ues at the first and third degree neighbors and subtract the
sum of the values at the second and fourth degree neighbors.

variable and thus M(x1, . . . ,xk−1,0,xk+1, . . . ,xn) =
M(x1, . . . ,xk−1,1,xk+1, . . . ,xn). Note that
(−1)x1+···+0+···+xn = −(−1)x1+···+1+···+xn . There-
fore, the vertices of the cube can be paired so that the values
of (−1)c1(u)M(u) on the two vertices of any pair are either
both zero or have the same magnitude but opposite signs.
Thus, the sum of the signed values is zero.

This result may be easily extended to polynomials as fol-
lows.

Corollary 1 For a given polynomial P in n variables of de-
gree m < n, the sum of the signed values (−1)c1(u)P(u) over
all the vertices u of the unit cube is zero.

Proof P = ∑i Mi is the sum of monomials of degree m < n.
We can permute the two summations:

∑
u∈Z

n
2

(−1)c1(u)P(u) = ∑
u∈Z

n
2

(−1)c1(u) ∑
i

Mi(u)

= ∑
i

∑
u∈Z

n
2

(−1)c1(u)Mi(u) = ∑
i

0 = 0

which proves the corollary.

The corollary implies that

(−1)nP(1, . . . ,1) = − ∑
u∈U

(−1)c1(u)P(u)

and hence

P(v) = (−1)n+1 ∑
u∈U

(−1)c1(u)P(u) = ∑
u∈U

(−1)c0(u)+1P(u)

As a consequence, in two dimensions the Lorenzo predictor
is a linear predictor, and can exactly reconstruct portions of
the scalar field that behave as a linear function

F(x,y) = ax+by+ c

In R
3, the same simple Lorenzo predictor can reconstruct

quadratic functions:

F(x,y,z) =

ax2 +by2 + cz2 +dxy+ exz+ f yz+gx+hy+ jz+ k

In R
4, the predictor extends its reconstruction power to all

cubic polynomials, which are linear combinations of 35 pos-
sible monomials of degree of 3 or less in 4 variables. Even
though the 15 values at neighboring grid points that the
Lorenzo predictor uses do not provide enough information to
compute all 35 coefficients of the polynomial, they uniquely
determine its value at the corner v.

The Lorenzo predictor is of highest possible order among
all predictors that estimate the value of a scalar field at one
corner of a cube from the values at the other corners. In other
words, it is of optimal order for this setting, and no other
predictor can correctly estimate all polynomials of degree n
or higher.

As a justification, consider the monomial x1x2 · · ·xn (the
product of all coordinates). The product is zero on all ver-
tices of the unit cube except for one. So, a predictor would
not be able to differentiate this monomial from the zero poly-
nomial. Hence, the values of the scalar field at the 2n−1 cor-
ners of an n-dimensional cube are not sufficient to recover
the value of an nth degree polynomial at the 2nth corner.

Note that simpler predictors exist that correctly predict all
polynomials of degree m < n. For example, one may use the
n samples that precede v on a scanline. However, such lower-
dimensional anisotropic predictors are much less effective
since they fail to exploit data coherence in all dimensions.
The Lorenzo predictor is the simplest isotropic predictor that
can recover correctly all polynomials of degree less than n.

5. Scanline compression algorithm

Consider a 4D scalar data set organized in an array
F[xmax,ymax,zmax, tmax]. Pseudocode for the compression
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algorithm is presented below:

Lorenzo(d,x1, . . . ,xn)

if all x1, . . . ,xn differ from −1
E := LorenzoPredictor(d,x1, . . . ,xn)

Encode(F[x1, . . . ,xn]−E)

else
Lorenzo(d −1,x1, . . . ,xk−1,0,xk+1, . . . ,xn)

for i = 1 to dmax do
Lorenzo(d,x1, . . . ,xk−1, i,xk+1, . . . ,xn)

The variable d indicates the dimension of the predictor,
x1, . . . ,xn are the coordinates of a sample in the data, dmax
is the number of samples in the dth dimension, and k de-
notes the greatest index between 1 and n where xk equals
−1. The function LorenzoPredictor computes the Lorenzo
predictor of dimension d (the first parameter) at the coordi-
nates x1, . . . ,xn. The starting call to compress a 4D data set
would be:

Lorenzo(4,−1, . . . ,−1)

For example consider the 2D case of a 3×3 matrix H, with
points from (0,0) to (2,2). The trace of the compression pro-
gram on the integer lattice would be:

call encoded value
Lorenzo(2,−1,−1)

Lorenzo(1,−1,0)
Lorenzo(0,0,0) H[0,0]

Lorenzo(1,1,0) H[1,0]−H[0,0]
Lorenzo(1,2,0) H[2,0]−H[1,0]

Lorenzo(2,−1,1)
Lorenzo(1,0,1) H[0,1]−H[0,0]

Lorenzo(2,1,1) H[1,1]− (H[1,0]+ H[0,1]−H[0,0])
Lorenzo(2,2,1) H[2,1]− (H[1,1]+ H[2,0]−H[1,0])

Lorenzo(2,−1,2)

Lorenzo(1,0,2) H[0,2]−H[0,1]
Lorenzo(2,1,2) H[1,2]− (H[0,2]+ H[1,1]−H[0,1])

Lorenzo(2,2,2) H[2,2]− (H[2,1]+ H[1,2]−H[1,1])

6. Footprint

When the data set is large, there may not be enough space to
hold it all in main memory. Thus, both the compression and
decompression algorithms may need to work from auxiliary
storage. In its simplest form, compression estimates the next
value using a predictor, then reads the next value from the
raw data input stream, encodes the difference, and writes the
difference out to the output stream of compressed values.
Similarly, decompression estimates the next value using the
same predictor, reads in the correction from the input stream
of compressed data, decodes it and adds it to the estimated
value, and writes the result to the output stream of decom-
pressed values.

Let the term footprint denote the amount of main mem-
ory needed by the predictor (both during compression and
during decompression). The footprint used by the Lorenzo
predictor for compressing or decompressing a data set is the
size of a single (n− 1)-dimensional slice, as illustrated in
Fig. 3 for the R

2 case and in Fig. 4 for the R
3 case.

Figure 3: When compressing an R
2 data set, the next value

(grey square) is predicted by using values from the footprint
(red). The other previously processed values (blue) are not
used by the predictor and need not be kept in memory.

Figure 4: When compressing an R
3 data set, the next value

(light cube in the center) is predicted by using values from
the footprint slice (red). The other previously processed val-
ues (bottom in blue) are not used by the predictor and need
not be kept in memory.

The footprint for compressing and decompressing a data
set of size Dn is Dn−1 + Dn−2 + · · ·+ D + 1. If all the di-
mensions do not have the same length, the size of the foot-
print depends on the traversal order, which could be chosen
to minimize the size. The footprint is implemented as a cir-
cular FIFO queue.

If the corrections are compressed with an adaptive arith-
metic encoder, memory to store a probability table is also
needed. While this space is generally much smaller than the
whole data set, it is often not necessary to store the prob-
ability for every possible correction. If memory is scarce,
only the frequently occurring, small corrections around zero
(Fig. 6) need to be compressed, while occasional large cor-
rections can be flagged and transmitted verbatim, with min-
imal impact on the compression rate.

7. Residual encoding and lossy compression

When lossy compression is acceptable, we allow a small dis-
crepancy between the compressed data and the real data in
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Figure 5: L∞ comparison of the Lorenzo Predictor (blue)
and SPIHT (pink), a 2D wavelet image compressor.

order to improve the compression ratio. We have considered
two different error metrics: L∞ (maximum error) and L2
(root mean square error).

To guarantee that we do not exceed a prescribed L∞ error,
we quantize the residuals from our predictor and readjust the
values at the scalar field to compensate for any possible error
accumulation. Thus the error made is at most the quantiza-
tion error. The adjusted corrections are encoded in a lossless
fashion.

8. Experimental Results

In this section, we report the benefits of using the Lorenzo
predictor as a preprocessor to an arithmetic encoder. We
also compare such a combined approach with wavelet com-
pression. Finally, we demonstrate the impact of the benefits
of data coherence on a higher-dimensional predictor.

We have tested our approach both on synthetic and real
data. Using synthetic data, we populated a volume data set
with functions of higher degree than that of the predictor.
For a 3D predictor, when applied to a volume data set filled
with a cubic function, the predictor makes a relative error be-
tween 3 and 8% (measure taken from applying the predictor
to different cubic functions), while a 4D predictor against a
volume set filled with a quartic makes a relative error of less
than 1%. Both errors are measured in the L∞ sense.

We have also tested our predictor on two real 4D data sets.
After applying the predictor we use two different lossless en-
coding methods to write the corrections to disk. The first one
is to feed the corrections to an adaptive arithmetic encoder.
The second one uses a context arithmetic encoder, like the
one studied by Bell 7, using the actual prediction as the con-
text for the correction. The context arithmetic encoder gives
us a 25% gain over the adaptive arithmetic encoder. We study
the benefits of using 4D compression rather than a series of
3D compressed slices. All values are quantized to one byte.

Our first data set, courtesy of Professor Chris Shaw from

Figure 6: Histograms for the LLNL data set. Top: Fre-
quency of the 4D corrections (which range from 0 to
1,000,000,000) as a function of their value, ranging from
-128 to 127. Middle: Frequency of the 3D corrections for a
single time slice. Bottom: Raw values, ranging from 0 to 255.

Georgia Tech, is a 3D model of a house on fire, which shows
how the fire, smoke and pressure progress through time and
space. This data set has a high number of zones where the
scalar values are uniform, and zones that exhibit high gradi-
ents, which correspond to the moving front of the fire. Be-
cause the high number of 0 corrections in the data set, best
results are obtained when using a lossless RLE compression
method, which we applied both to the 3D and 4D residuals
for comparison. The uncompressed 4D data set has a size of
43,202,395 bytes and a total information content (based on
its entropy) of 23,491,302 bytes. Compressing each 3D slice
independently we obtain 1,076,587 bytes (2.49% of the to-
tal), and 524,768 bytes (1.21% of the total) using 4D com-
pression. Due to the high coherence in all dimensions, the
4D predictor outperforms the 3D compression applied to in-
dividual slices by 50%.

Our second test data set was produced in a fluid mixing
simulation at Lawrence Livermore National Laboratory, as
described in 8. A volume rendered image of this data set is
shown in Fig. 1. During the beginning time steps the flu-
ids are virtually at rest and the data set is relatively easy to
compress. As the fluids mix up in later time steps, the com-
pression ratio decreases. For this data set, we chose to use an
adaptive context arithmetic encoder as a postprocessing step
to the Lorenzo prediction.

The 3D time slice predictor produces the best compres-
sion on this data set. 3D predictors for 3D slices in all the
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other directions are less effective. To explain this behavior,
consider that this data set was originally computed at high
resolution in time (27,000 time steps were simulated), but
then decimated and quantized due to limited storage. The
floating point data was quantized to one byte and only one
frame out of every hundred was actually stored, although
no decimation was applied in the spatial dimensions. This
subsampling phase has significantly reduced the coherence
along the time axis. Our approach gives us 304,937,058
bytes using the 3D Lorenzo predictor on each time slice
(1.77 bits per symbol) and 318,871,620 bytes using 4D pre-
diction (1.85 bits per symbol).

Dataset 4D Lorenzo Predictor Cubic Wavelets

Smooth 644 0.16 Bits/Symbol 0.20 Bits/Symbol
Rough 644 3.73 Bits/Symbol 3.28 Bits/Symbol
Rough 1284 1.75 Bits/Symbol 1.80 Bits/Symbol

Table 1: Entropy of the residuals produced by wavelets and
the Lorenzo predictor for a 4D data set. No quantization or
truncation of the data or residuals was done.

We have compared the Lorenzo predictor with wavelets in
two scenarios. In the first case we evaluate lossless compres-
sion, where we compare cubic wavelets with the Lorenzo
predictor for several 4D data sets. As can be seen in Ta-
ble 1, which reports the entropy of the corrections of both
schemes, wavelets and the Lorenzo predictor produce com-
parable results. In our second scenario, the Lorenzo predic-
tor was compared to SPIHT 9, an efficient wavelet coder
that uses the S+P transform, in terms of rate distortion us-
ing lossy compression. Fig. 5 shows that the Lorenzo pre-
dictor performs better in the L∞ sense on this data set. The
compression ratios of this example were computed by com-
pressing the residuals using a context arithmetic encoder for
the Lorenzo predictor, whereas SPIHT used its hierarchical
tree method.

9. Conclusion

The Lorenzo predictor, introduced here, predicts the value
of an n-dimensional scalar field F at a sample point v from
its 2n − 1 previously processed neighbors that form the ver-
tices of an n-dimensional hypercube. The predicted value for
F(v) is simply the weighted sum of all values of F at the
other corners of the cube. The weights are either +1 or −1,
depending on the minimal number of cube edges between
the sample and v.

The Lorenzo predictor is exact for all polynomials of de-
gree less than n, and its accuracy increases with the smooth-
ness of the data. Because of the limited size of its footprint,
the predictor is well suited for out-of-core streaming com-
pression and decompression.
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